
R2AD White Paper: SERVICE ORIENTED AQUISITION

© Copyright R2AD, LLC 2007-2008

- 1 -

SERVICE ORIENTED AQUISITION
Evolving how Services Acquire Software in a Net-Centric Age

Version 0.9c DRAFT, 09/17/2008

Authors

 Michael Behrens, R2AD, LLC (Editor) , Eugene Luster, CSC

Abstract
Many software paradigms have come and gone. More are on the way. All purport to be the

silver bullet that has eluded the software development industry since its inception around the

middle part of the last century. One thing experience has taught us is that unless the

acquisition process keeps up with the dynamic nature of software development it could

become a stumbling block that prevents best practices from taking hold.

This paper covers a myriad of topics that the authors have noted which affect the entire

software life-cycle process with a focus on acquisition. With each issue raised,

recommendations for improvement are provided which hopefully can be implemented so that

the U.S. Taxpayer can purchase the best DoD software systems for the U.S. Military and its

allies.

A goal of this paper is to describe how acquisition of enterprise software systems can promote

interoperable interfaces, it is necessary to combine Net-Centric or Service Oriented

Architecture (SOA) concepts with software development processes. The papers takes a

holistic view and considers impacts of acquisition theory to the entire software life-cycle.

Copyright Notice
© 2007 R2AD, LLC Corporation. All rights reserved. No other rights are granted by implication, estoppel or
otherwise. R2AD is a registered trademark of R2AD, LLC in the United States and/or other countries. The names of actual companies and

products mentioned herein may be the trademarks of their respective owners.

Permission to copy and display this “SERVICE ORIENTED AQUISITION”
Whitepaper (“this Whitepaper”), in any medium without fee or royalty is hereby
granted, provided that you include the following on ALL copies of this Whitepaper, or
portions thereof, that you make:

1. A link or URL to http://www.r2ad.com to ensure recipients can obtain future updates or an original.
2. No changes to this Copyright Notice as shown in this Whitepaper.

The information contained in this document represents the current view of R2AD, LLC Corporation on the issues
discussed as of the date of publication. Because R2AD must respond to changing market conditions, it should not be
interpreted to be a commitment on the part of R2AD, and R2AD cannot guarantee the accuracy of any information

presented after the date of publication.

R2AD, LLC MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE INFORMATION IN THIS DOCUMENT.
R2AD may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering
subject matter in this document. Except as expressly provided in any written license agreement from R2AD, LLC, the
furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other
intellectual property.
RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-
14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a). THIS
WHITEPAPER IS PROVIDED "AS IS". R2AD, LLC, BiblioTronix, LLC (COLLECTIVELY, THE “COMPANIES”) MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS
OF THIS WHITEPAPER ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS. THE COMPANIES
WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF OR RELATING TO ANY USE OR DISTRIBUTION OF THIS WHITEPAPER.

R2AD White Paper: SERVICE ORIENTED AQUISITION

© Copyright R2AD, LLC 2007-2008

- 2 -

Table Of Contents

I. Service Oriented Architecture ... 3
Thinking Service Oriented Architecture ... 3
An Example High Order Service ... 4
Common Services .. 4
Service Level Agreement Transport .. 6

II. Service Development .. 7
Service Inventory... 7
Software Repository ... 8
Source Code.. 8
Code Re-use.. 9
Program Utilization Metric ..10
Separation of Concerns..10
Cyclic Waterfall Software Development ..12

III. System Architecture...13
Architecture Gap ...13
Architecture Patterns ...13
Software Model Relativity...14
Net-Centric or Data-Centric? ..15

IV. Migration from Legacy Architectures...15
Migration Paths...15
Wrapping ...15

V. Distributed Computing..16
Power to the Edge...16
Key Technologies ..16
Data to the Edge...16
Principles of Net-Centricity ...18

VI. Odds and Ends ..18
Standards Compliant ...18
Patriotism & Rewards ..18
Accountability & Requirements..18
Certified DoD Software Engineer ...19
Certification and Accreditation of Services ..19
Service PitFalls...20

Customer (End-User) Input ..20
C2 XML Document ..21

Standards ..21
Cost-Benefit Analysis...22

VII. Terminology and References ...22
Acknowledgements..22
References ...22

R2AD White Paper: SERVICE ORIENTED AQUISITION

© Copyright R2AD, LLC 2007-2008

- 3 -

I. Service Oriented Architecture

Thinking Service Oriented Architecture1

If a minefield were available as overlay, then the graphics and perhaps a name would be

displayable as part of the battlespace visualization in a C2 system. The operators that created

the overlay would know what it meant and would include it on their briefs along with verbal or

textual information about the situation.

With our net-centric hat on, that overlay could become available as an overlay web service

and made available to a wider community and even available using simple HTTP requests as

part of mashups2. However the meaning and importance of that shaded area would be lost

outside the context in which it was created if only the graphical representation was

disseminated. A logical question is raised: should there be a service for every type of

overlay, in this case, a minefield web service? It could provide the graphics using Geographic

Markup Language (GML) as well as providing useful data about the minefield – the data behind

the overlay (type, timing model, status, country of origin, pedigree, etc).

Taking this a bit further, higher order services would then use this service as they perform

their functions such as route planning. A soldier in the field could ask the higher-order geo-

spatial route service to generate a route between two points for given parameters. This route

service could then invoke other sub-services for roads, minefields, blockades, checkpoints,

enemy positions, sensors, weather, etc. and provide an appropriate route back to the soldier.

In general, everyone (architects, designers, PM) should think about how “data” can be used by

others outside the enclave. The services should be self-describing, self-contained, and

modular. Data should be capable of being externally referenced with some lifecycle

guarantees (meaning, the service should be backwards compatible). All these in turn can then

be choreographed to make the network the computer.

1 Extracted from the Thinking SOA paper v1.2 available at http://www.r2ad.com/papers.
2 http://en.wikipedia.org/wiki/Mashup_(web_application_hybrid)

Figure 1 - Cascading Services

Asynchronous

R2AD White Paper: SERVICE ORIENTED AQUISITION

© Copyright R2AD, LLC 2007-2008

- 4 -

An Example High Order Service

Consider an end-user on a wireless thin client requesting an evacuation route from a route

service. Many back-end services are invoked automatically to ensure that the route provided is

secure and fast. There is a hierarchy of services at work being invoked by the route service

using the weighting factors provided by the end-user (e.g: security is more important than

speed). Some of these might include weather and the location of enemy and friendly forces.

These lower level services are also being invoked by other services independently in a

stateless manner.

Many assumptions are made in the diagram, however it is important to understand a few of

them. Consider the minefield service for instance. It would need to expose a operation which

returns a list of minefields within a geographic box or along a multi-part path or corridor.

Presumably, along with that information is an ability to obtain geo-rectified vector graphics for

those minefields, in the case where the user is able to request visualization in a coordinate

space.

Now suppose a new service is created which provides information about biological or chemical

hazards. Can the system ingest that new data source and convey it as part of a command and

control presentation service and be incorporated into the route service? Can this be done

“without” any code changes to the existing route or presentation services?

If we can achieve that sort of dynamic data integration, then we will have true information

integration. For the engineers, this means that the design must be robust and agile, taking

into account extensibility and versioning concerns.

This example scenario is useful from many perspectives. It helps one to look at net-centricity

in a more abstract manner. One can “design” many such hierarchical dependent services in

depth, in order to reveal many patterns which should be applied to all service implementations

(naming, security, auditing, priority of invocation, pedigree/providence, updates, etc). From

the warfighter point of view, the importance is the timeliness and accuracy of the route.

These are part of the requirements which need to be specified in the command and control

requirements document.

Common Services

The general consensus is that stovepipes are bad. One of the forcing functions which create

stovepipes is acquisition policy that do not encourage common infrastructure. Contracts and

task orders that focus solely on a single capability or function end up creating a stovepipe.

This raises the overall cost of the system because many dollars are spent on the integration

and interoperability down the road, simply because using common services were not

employed.

Even within the execution of a contract, management tends to break things apart into different

divisions or groups or based on the wrong categrory, thereby creating a stovepipe potential.

An example of this would be creating a group based on the branch of Service (Army, Air Force,

etc). Instead, groupings would be better if organized functionally, such as Security, Data,

Transport, etc.

Acquisition must think horizontally. This means that contracts need to be let out which take

advantage of and provide for horizontal layers with less reliance on vertical layers. The more

functionality that can be derived from the horizontals in the architecture, the more cost

effective the system is and the more re-use is attained. The project then can focus on its

main business (warfighter) purpose.

R2AD White Paper: SERVICE ORIENTED AQUISITION

© Copyright R2AD, LLC 2007-2008

- 5 -

Consider two separate areas: Intelligence and Medical. Currently, both systems would be

under different contracts and different vehicles. What should happen is a total system

engineering approach that acknowledges that all systems share many of the same functions

and patterns.

Every system has many things in common:

• store, retrieve, update, and remove data (standard CRUD operations)

• Transport the information to different systems

• display the information in standardized formats (word processing, spreadsheets,

presentations, accounting, etc)

• secure the information with transactional integrity and auditing

• provide for access controls

• configuration management of updates and patches

• help and training

• and many more

As another example, examine at how many different ways there are to distribute data

between sights: Oracle Replication, Sybase Replication, Proprietary synchronization messages,

network appliances, and others.

Having different implementations of these common services is not necessarily bad, however

having a standardized interface for them would shield developers and the necessary vertical

components from having to develop their own. These standardized layers is what the Grid

Computing field is attempting to create and supporting standards organizations such as the

Global Grid Forum is one way to achieve horizontal layers which all systems can benefit from.

Network

Operating System

SECURITY

TRANSPORT

STORAGE

CRUD

Vertical

Business Custom

Network

Operating System

S

E

C

U

R

I

T
Y

S

T

O

R

A

G
E

C

R

U
D

T

R

A

N

S

P

O

R

T

Vertical

Business Custom

Vertically Built System Grid Infrastructure System

Grid

Computing
Infrastructure

R2AD White Paper: SERVICE ORIENTED AQUISITION

© Copyright R2AD, LLC 2007-2008

- 6 -

Common or cross-cutting services therefore help reduce duplication of service

implementations and help increase the level of interoperability. Developers and the

Acquisition process must help ensure standards and published specifications (DoD or from a

standards body) are actually used and not just referenced. The DoD should insert itself

strongly into the standards process to help ensure that the products meet the critical needs of

the department (such as disconnected or low-bandwidth operations.

If governance does not advocate standardized interfaces for these basic functions, then

developers will discover the newer technology and incorporate it in proprietary fashions which

cultivate lack of interoperability. Advertising these interfaces is important for adoption.

Service Level Agreement Transport

Along the lines of using shared infrastructure is the use of a standardized transport for our

data that is exposed as services or other means. An inherent pitfall in following standards

however is that the specification behind the standard is open to interpretation, leading to

implementation variants. For example, we suggest that the DoD take up the cause of

developing a specification for a reliable, robust, and secure communications service. This

would entail much more detail that simply stating that an Enterprise Service Bus (ESB) should

be used. This transport service should be engineered from the ground up with the

requirements that we know we must have such as guaranteed delivery and distributed data

policy. Standards such as Java Messaging Service (JMS), which is a huge part of ESBs today,

already offer guaranteed delivery, however what they mean by that is that if the network is

down, they simply queue up the message for later delivery. This simple queue methodology

causes performance bottlenecks and delivery of stale content. What a robust transport layer

would do instead is to understand the network and use it to make the delivery of data to

include using other means such as email, secure FTP, or satellite, even sneaker-net if need be

to accomplish high priority communications. The transport service would be designed with

priority channels, built in integrity such as those used in satellite communications to enable

reassembly of data if the stream is interrupted. The creators of information would also

indicate the pedigree of the data along with time oriented descriptors which can be used by

information dissemination algorithms.

An application developer would have to simply specify a delivery level of service, much like we

do when we purchase something and choose between overnight or ground delivery

requirements. This would enable application developers to also provide a data policy which

can be referentially attached to the data or data stream to help ensure access rights and

distribution control via embedded tagging.

Business Logic

Transport

Abstract
Layer

Network TCP
(HTTP/S, RMI, SOAP, etc)

Disk Read/Write

Network UDP
Streaming

Secure FTP

R2AD White Paper: SERVICE ORIENTED AQUISITION

© Copyright R2AD, LLC 2007-2008

- 7 -

II. Service Development

Service Inventory

A service registry is an inventory or catalog of all DoD software listing services under

development and in the field. Information such as the program sponsor, development, time

period, and other factors would be available to the many authorized individuals. This

inventory would be accessible on-line, open, and searchable. It can be distributed in that each

Service could stand up their own inventory which can be searched and indexed by others.

An active inventory of DoD software is needed to help promote awareness of services (net-

centric software components). A federated registry will promote re-use and to reduce the

amount of wasted tax payer dollars on duplicative non-interoperable development.

Currently the Federated Development and Certification Environment (FDCE) process in the

Net-Enabled Command Capability (NECC) program is an example of how services can be

registered during different test phases and how a common development environment can help

ensure interoperability though code-sharing. This aspect was most successful as part of an

NCES collaboration environment known as the GiG Enterprise Development Network (GEDEN)

based on Collabnet. It has been shutdown, however a new and better site should be available

soon called DoDForge.

The key change for Acquisition is to ensure that the contract language supports the sharing of

source code and build scripts. Furthermore, it is important that development efforts first look

at what has already been developed before re-inventing the wheel. Therefore it is important

for the registry to also show programs/services/tools/etc which are under development across

the enterprise. Otherwise, when it comes time to use a service, the warfighter will have too

many choices which do not interoperate. Even the government team which writes the

contracts must first examine and use this registry to ensure they do not become the reason

for duplication of effort.

This is the exact reason why governance in a SOA is so important. If the services are not

interoperable then the point of the SOA is lost. This is why it is important for architects to be

involved in the development cycle and it is important for organizations to create governance

boards to create policy and make sure services conform to those policies before being put into

operation. While the FDCE concept can help, it would most likely be better for each COI to

have their own FDCE and a parent FDCE to govern cross-community services.

The products that are built need to be advertised and promoted in order to increase awareness

and incorporation of them. Word of mouth is not very efficient. Creating a slick-sheet or a

product web page with features and screen shots, for example, can help prevent the re-

invention of the wheel. Search engines, such as Google, should be able to pick up that

information. An emailed newsletter and email announcements would also help distribute

knowledge about existing and forthcoming capabilities.

Many systems today are so huge, that over time, parts of them are forgotten and end up with

duplicate functions implemented in different ways over time. Creating smaller component

services can help prevent the cost of “dead” code. GCCS-J, for instance, has far more

capability within it than anyone realizes (i.e.: Intel and COP Web Services, interactions with

Google Earth, etc).

This paper proposes a service catalog (not UDDI) for Architects, System Engineers, and

management/developers to go to in order to find out what all the current services are and

also, what the planned services are. This would help reduce the wheel reinvention syndrome.

R2AD White Paper: SERVICE ORIENTED AQUISITION

© Copyright R2AD, LLC 2007-2008

- 8 -

Therefore this catalog or service white pages and yellow pages would need to provide

developer point of contact (POC) information, release schedules, draft and final (if fielded)

WSDL files, and perhaps multiple endpoints which can be used for testing and for actual use.

Contracting agencies should be able to reference this registry to ensure that developers are

not reinventing the wheel. Developers need to use this registry in their design and proposal

documentation. Furthermore, contractors and agencies should be able to advertise their

services as well (yellow pages), creating a marketplace with a little competition.

Software Repository

The Ada Information Clearinghouse [AdaIC] is a good example sharing software to promoting

re-use. This is similar to SourceForge, Java.net, or the Java Community Process (JPC)3 on the

internet.

Currently, most systems are developed over a period of time, tested and evaluated over a

period of time, then fielded and patched over a period of time. This paper proposes a new

approach that would provide field offices the ability to perform their own maintenance by the

qualified F&M teams. This would move to the “edge” the software change process making it

more responsive to the regional needs. At the same time, changes which affect the greater

community need to make its way across regions. Good configuration management processes

can help ensure communication and acknowledgement of changes.

One benefit of this approach described earlier in this document is that the original developers

would become totally devoted to the next generation system. Another benefit is that the F&M

teams could work closely with the end user to affect positive change in the system. For

example, one site might want a new button added to a GUI to help filter objects from a map

or to help with printing. Since all the code would be accessible to the F&M teams, they would

be able to add this sort of minor functionality. These modifications would not require massive

redesign or retesting efforts. Minor bugs could also be fixed and recurring problems could be

analyzed near their source.

There are some security concerns; however they are mitigated by establishing Regional

Maintenance Centers (RMC). These centers would collaborate with the other RMCs and with

R&D teams. Everyone with access would have access to the repository which would be under

strict configuration management. Only those changes which have been tested and verified

with the embedded security engineer would be allowed to be executed on operational systems.

This model is actually already being used, however not officially and not in a controlled

manner. The establishment of RMCs would help bring more control the system and along with

it more security.

Once a standard repository is adopted, such as Application Content Services (ACS)4, then

maintenance can be performed on code in the repository in a controlled and secure manner.

ACS is a trusted software repository which is a new specification which leverages the OASIS

specification called Solution Deployment Descriptor (SDD) which provide a function similar to

the COE installer and the DISA DII COE Integrated and Runtime Specification (I&RTS)

descriptors.

Source Code

Currently, many contracts do not require that the source code be delivered. This is terrible.

As contractors come and go and software systems age, it is important that the systems used

by the war fighters be capable of being maintained in an efficient manner. Furthermore,

3 Java® Community Process homepage: http://jcp.org
4 ACS Web Site: https://forge.gridforum.org/projects/acs-wg

R2AD White Paper: SERVICE ORIENTED AQUISITION

© Copyright R2AD, LLC 2007-2008

- 9 -

source code, when delivered, can be used to verify functionality, validate security, and to

gather metrics on efficiency and compliance to standards.

At delivery time, the contractors should be asked to not only deliver the code, but also the

scripts and tools necessary to create the binaries and the entire delivered media. Delivering

functioning virtual machines or zones that contain the full development environment would

help as well. Furthermore, the government agency should only put into use the binaries that

have been created from that source using the instructions and tools specified by the

developers.

This concept is not new and not radical. This concept has been successfully employed on

numerous contracts such as the CMTC5 and JRTC systems from TRADOC via STRICOM.

Every developer that builds software systems has the tools that create the software. If that

capability were also at the “edge”, then last minute or emergency fixes could be made close to

where the capability is deployed. New features could be added in critical or controlled

environments. Taking this concept a little further, the creation of Regional Software

Maintenance Centers whose responsibilities would include the configuration management and

maintenance of software is in order. This would free up the production world to focus on real

advancement. Many times engineers have become tied down in maintenance that prevents

“re-factoring” from occurring. Collaboration between the centers would ensure that fixes are

shared and that new features can be employed if needed in other regions.

The DoD should establish a requirement to analysis all source code. Usually, the U.S.

Government (DoD in particular) has only usage rights. Having the source code supports

automated testing and analysis, and long term maintainability. There is movement in this

area though the use a federated development environment in the NECC arena. The serious

DoD contractor concerns are expected to be their right to secure their intellectual property and

not to lose their competitive advantage when contracts come up for re-compete. A radically

new way to develop systems for the DoD can be the use of software appliances which enhance

retains corporate value while at the same time provides the best quality system for the

warfighters.

This sort of model was successfully employed in at least one system developed for the U.S.

Army at the Combat Maneuver Training Center (CMTC)6 which has been maintained on site for

over 10 years.

Code Re-use

Code re-use is achievable if there is a will to do so. Reuse can save money which can then be

spent to build newer and better capabilities which can be delivered sooner. How many word

processors are needed in the field today? The answer of course is one. How many ATO

viewers or Target systems or message processors are needed? Why do we have so many

different variations of software which perform essentially the same function? How many

millions of dollars could be saved if there were a single authoritative council that directed the

architecture and design of our command and control systems?

A single authority could be created by an act of Congress or internally within the department.

This might evolve out of the current JFCOM efforts to unify the Services, however there are

too many cooks in the kitchen so to speak. Each service (AF, Navy, etc) has their own

budgets for systems and this causes conflicting efforts and waste. Attempts in the past to

unify the services have for the most part failed. The failure to agree on a single way of doing

the same things is covered up with the notion of “family of systems”. Even today’s Service

Oriented Architecture notions are being twisted at the protocol and semantic level which

creates minimal interoperability. Instead of every service and agency being in a race to come

5 http://www.jmrc.hqjmtc.army.mil/
6 Entity Force Structure: http://www.r2ad.com/papers/ForceStructure-R2AD.pdf

R2AD White Paper: SERVICE ORIENTED AQUISITION

© Copyright R2AD, LLC 2007-2008

- 10

-

out with a SOA solution, lets all take the time and work together to first lay out the

requirements, then a specification, then a standard from which to implement against. This

would yield a set of standardized network interfaces at a minimum which is the goal of NECC.

There could then be a marketplace that has multiple instances of a service created by different

providers. Communities of interest would be free to determine which the best service is and

therefore which get ongoing support. Because these services would all conform to the same

interface the developer or end-user all use the services in the same way.

The Java Community Process (JCP) is a good model to follow. Another would be the IETF or

the GGF7. What if all command and control software were like Java? There would be a single

package for creating a URL and making a network connection and establishing a secure

context. Changes to the system would be exercised in small focused JSR-like working groups

consisting of stakeholders. These groups would be created with the approval of the board.

The forward progress would not be duplicative and as wasteful as today’s software

development.

As a side note, perhaps there is too much money in the DoD for software development. This

presumably stems from the way each project is funded: No direction and community policy

enforcement to encourage the re-use of specifications, architectures, designs, and code.

Without top-down direction, there is no reason for individual projects to use anything that

already exists. Why should they, if there is funding for them to re-invent the wheel? They

can work and develop and be happy without consideration about other applications and how

they interact and are managed. On the other hand, with so much duplication, there exists

competition. So perhaps the challenge is to officially hold competitions which focus on

interoperability and to reward achievement.

Program Utilization Metric

Another aspect of acquisition that can change to positively affect net-centric software

development is the creation and use of a new measurement which shows the effectiveness

and adoption of software. This is related to code re-use in that it is a measure of the success

of a program to have active applications deployed and used.

Far to often, program management or higher-level agency policy stop funding on a project

without knowing the full effect of that decision. For example, consider an Army project for

terrain analysis that is being developed by the Army which they also provided to other

services and agencies. What would the impact be if Army decided not to fund the delivery of

the capability to the Joint Program office just because of a misalignment in technical

architecture? The application would soon be pulled and then become unavailable on systems

which warfighters use. If a metric were collected which indicated that the terrain analysis tool

was actively being used at 58 sites around the world (in addition to the Army specific sites),

then the Army task monitor would be more likely to continue funding the Joint aspect of the

project because the return on investment is huge. Army, in this example, should be allotted

"credit" for providing capability beyond their Area of Responsibility.

Separation of Concerns

Software developers can generally handle more than one task at a time, however the

efficiency factor declines as more tasks are added. The acquisition process must ensure that

the time lines that drive the schedules and fielding are taking into account how they affect the

quality of the software systems being built. In some systems of record, the author is aware of

developers having to be responsive to problems in the field for version 1.0 while delivering

7 The Internet Engineering Task Force (www.ietf.org) & the Global Grid Forum (www.ggf.org)

R2AD White Paper: SERVICE ORIENTED AQUISITION

© Copyright R2AD, LLC 2007-2008

- 11

-

and testing 1.1 while working on design materials being presented at PDRs and CDRs for 1.2

while preparing for the research and programmatics of 1.3 or 2.0.

The diagram below depicts in green (on the left) how development teams are constantly

responsible for many versions at one time (overlap). The graph on the right separates fielding

from development and there is minimal overlap of versions.

The question remains how the fielding concerns can be separated from the development

concerns. One method typically employed by commercial software houses is to create two

distinct departments: Manufacturing and Production. Manufacturing can be considered a

Research and Development (R&D) Integrated Product Team (IPT) and Production can be

considered a Fielding and Maintenance (F&M) IPT.

In the diagrams above, the overlap in the first graph and the larger gaps in the second

workload graph would be filled by the F&M team. R&D teams are more expensive than F&M

teams, so by reducing the workload on the R&D team, the cost savings can be applied to the

F&M budget. The cost model of the software develop should look then look more like a bell

curve instead of a flat line of constant IT spending. This model was successfully employed as

part of STRICOM's training system acquisition.

Figure 3 - R&D and F&M interactions

The breaks between versions then provide for a “refactoring” period during which the lessons

learned, newer technology and training can be brought to bear for the next release. This

period is a time of enlightenment. The developers are brought out of their development labs

and can recharge, like coming out of a cave into the light.

It is vital that management ensure that the vital communication between the R&D and F&M is

fostered. It is recommended that during each cycle, a small portion of the R&D team actually

become part of the F&M team for a short period. The lessons they learn can be brought back

Stressed Overlapping of Developer Resources Better Quality via better Management

V1.0 V1.1 V1.2 V1.0 V1.1 V1.2

R2AD White Paper: SERVICE ORIENTED AQUISITION

© Copyright R2AD, LLC 2007-2008

- 12

-

into the R&D fold. Those developers that gain good experience with testing and fielding

generally build better quality software.

Keep the procurement model distinct from any particular technology choice used by the

developing contractors is a way to ensure that the same acquisition process can be used

regardless of whether SOA or Client-Server is employed as a means to meet the requirements.

Maintaining good communication between all involved is extremely important.

Another factor which could be healthy is periodic budget crunches where management is

forced to prioritize funding. An historic example of this occurred during the Gramm-Rudman-

Hollings law which forced a ten percent cut across budgets.

Without a solid governance model, SOA will be chaotic resulting in extra dollars being spent

later to address shortcomings and worse, money would have been spent on capabilities that

never get used.

Cyclic Waterfall Software Development

One benefit of the waterfall software development cycle was that it had a clear beginning and

ending. Schedules might slip, as they tend to do, however when the project was over, it was

over. The resultant system could then be in use for years with only periodic maintenance and

needed enhancements. The quality of the system was greater in the end, mostly because

everyone knew the stakes involved at each step of the way. All stakeholders examined the

output of each step thoroughly to ensure it was done right the first time. Process oriented

projects ensured that there was a cleanly defined mechanism to insert changes, such as new

requirements, which spawn a miniature speedy cycle to catch up to the main development

with solid impact analysis and reviews. Without that mature process, requirements creep from

multiple sources and the real end-user requirements are not fully captured. The budget model

typical mirrors a bell curve.

On the other hand, the more recent cyclic refinement methodologies present no reward for

success and support failure. If there is a bug or a missing feature, then it is fixed on the next

go around. Production software has a tendency to become “good enough”. A special project

manager and development team is required to have good experience in order to be able to

listen to the customer input and respond with agility to prioritize the changes. The budget

model tends to be constant over time or worse, increases at a steady rate.

Therefore, what is needed is a combination of the two models,

referred to here as the cyclic-waterfall, or the “Seven Pools

Method”, after the Seven Sacred Pools of Kipahulu on Maui, HI.

It is important to get a working system out the door periodically

(the waterfall). While in the pool, cyclic processes can be used to

specify-build-test. In-between pools, developers and managers

have an opportunity to examine newer technology and other

competing implementations. During this breather, complete re-

factoring can occur as needed. The older development team can

be downsized if needed or put on different projects all together.

As the project matures, the pools become deeper meaning they

have more capabilities, are more robust, have a higher quality,

and are closer to being in production (fielded). The budget model

has ups and downs and becomes less over time.

R2AD White Paper: SERVICE ORIENTED AQUISITION

© Copyright R2AD, LLC 2007-2008

- 13

-

III. System Architecture

Architecture Gap

The majority of today’s developers are not aware of the architect’s work. They develop their

systems and as an after thought, the “architecture” might be updated or created to reflect the

current state of the system. This process is backwards from the science of software

engineering. This is a trend which was noticed by us in the late 1980’s. The gap has grown

some since then. As technology advances and developers adapt, the gap space changes,

sometimes getting better sometimes worse, based on this author’s observations.

In any event, there is a real gap, as evidenced by lack of metrics showing how architecture is

actually being used with the DoD8. In order to reduce this gap, it is important for architects to

be a part of the actual software development lifecycle. While many programs have an official

architecture group and/or a least a lead or chief architect, it has become commonplace that

they are often away from the development activities and show up at the Preliminary and

Critical Design Reviews (PDRs & CDRs) in time to make some minor adjustments. However

this practice tends to place the architects on the defensive and at odds with the software

designers. If the architect could appoint junior architects in each major development shop,

then perhaps the communication lines could remain open through all the phases of

development. Furthermore, it is recommended that Architecture Reviews (ARs) be established

before the PDR to ensure that the architecture being adopted by the designers is inline with

the vision and policies needed to achieve interoperability, shared standards and designs.

While some argue that it is not possible to architect and design the enterprise, we believe that

a unified architecture is possible. This unified architecture, much like the architecture stack of

the world wide web, would exist for the purpose of server applications and sharing resources

such as storage and processing power. This new web would evolve from the grid computing

technology and standards allowing application logic and data to be distributed across a

dynamic mesh.

Architecture Patterns

Just as there are object-oriented programming patterns, there are also architecture patterns.

They become very evident when looking at the data flow diagrams, for instance, of the many

command and control systems. They all ingest data, store the data, and provide query

mechanisms for processing and display.

We need to begin to re-use architecture in the same way it is desirable to reuse code libraries.

This can help reduce cost and increase interoperability. Analyzing the various systems for

these patterns would yield enough information to present a single architecture for the DoD.

Given more time, the authors of this paper would like to perform this task and publish the

results on architecture patterns in the DoD. Efforts such as NCOW, NESI, and others would be

analyzed with the cooperation of their government bodies and the DoD Architecture

Framework (DoDAF) and the Federal Enterprise Architecture Framework (FEAF).

Albert Einstein desired a unified field theory to join the mechanical laws with the theory of

relativity. A common architecture can become a corner stone upon which to build many

systems in an efficient manner. The Object Management Group (OMG) introduced Model Drive

Architecture (MDA) which supports the abstract of architecture away from a specific language

implementation.

8 GOA review: http://www.gao.gov/new.items/d04731r.pdf

R2AD White Paper: SERVICE ORIENTED AQUISITION

© Copyright R2AD, LLC 2007-2008

- 14

-

The ongoing logical follow-on would be a unified architecture where constructs such as

persistence, cache, transaction, audit, authenticate, etc. would all carry the same detailed

semantics making implementations of them compatible between systems.

Software Model Relativity

Model Driven Architecture (MDA) promises that all code might be generated from the “model”.

While this can be true, the quality and depth of the code generation component comes into

question. While the idea of a model is good, let’s consider the concept of the model for the

military. Where is the C2 or C4ISR Model for the U.S. Military? There have been attempts to

rally around models like C2IEDM or others, however they are limiting and different groups

interpret them differently, abuse their meaning, or more often extend the model to fit their

needs. This of course causes problems when communicating. Can there be a single model for

all C2?

Applying Object Oriented methodology, one would say that since in the real world there is only

one of each thing and that all attributes and behaviors exist in the real world, it is therefore

just a matter of writing them down for our problem space (battlefield, etc). Of course it is not

that simple as the perceptions of reality for different individuals play a role on what each

person or organization or country might believe the model should be. Essentially, Einstein’s

Theory of Relativity has a role in software development. The traditional “is a” or “has a”

relationship all depends on the point of view – it is relative. Does a tank contain a bullet or is

a bullet in a tank. What about time? Einstein would insist that we bring that up because not

only does it depend on our point of view but also of time. What are all of the relationships for

the round when it is being manufactured, or warehoused, or transported, or loaded, or fired?

These “forces” in software development create a never-ending cycle of change that will cost

billions and trillions of dollars over time (black hole?).

It is therefore important to convey/communicate to all developers the semantics of interfaces

as well as the syntax. The architectures of the net-centric era need to bring a common

language to the systems of records to ensure interoperability happens.

Figure 4 - Entity Structure Pattern

R2AD White Paper: SERVICE ORIENTED AQUISITION

© Copyright R2AD, LLC 2007-2008

- 15

-

Legacy

Net-Centric
Wrapping

Today’s best and evolving standard for conveying and depicting architecture and design is

MDA which is built on the shoulders of Unified Modeling Language (UML). Figure 4 shows an

example of a well understood model, Task Organization or Order of Battle. It is not complete,

however it conveys that a battlefield entity can contain other entities (hierarchy) and that

these entities are associated with a force. Even though we generally understand this model, it

is difficult to have a consensus on what it should be exactly. This dilemma creates an

interoperability challenge. Either there are multiple models which can’t be exchanged, or the

model becomes too huge and complex that it is a barrier to implementation. Perhaps the

answer might be to have models of models which can extend each other.

Net-Centric or Data-Centric?

Data is important, no doubt, however centering on data or any one aspect of net-centricity

(services) causes net-silos wherein only those services hard-coded to understand the

semantics of the data are able to use it. To overcome that, many “bridges” end up being

created manually or using tools (essentially programming translators). Instead, it is

important to follow how one can create a service to exchange information without human

intervention. This is perhaps wishful thinking and too far off into the future, however at a

minimum more emphasis is needed on the standards which enable standardized cross-domain

communication and cross-CoI communication.9

IV. Migration from Legacy Architectures

Migration Paths

An abstract and detailed view of the system

architecture is needed to understand the full impact of

decisions which impact the course of the future system

of record. There are many possible migration paths

which fall into two major categories/ philosophies:

• Complete Overhaul and Re-Design

• Stepwise Cyclic/Spiral Evolution

There are pluses and minuses to each approach, however while the future systems are in the

process of defining themselves, it seems that the older systems are evolving and proving

themselves to be worthy of retention. For example, GCCS-J is already using Web Services and

will be even more so in the near future, essentially catching up to capabilities displayed in the

NECC Pilots and in some cases surpassing them.

So it seems that new development should certainly be reviewed for net-centricity (along with

security, GUI design, standards, etc) while at the same time legacy systems should strive to

expose a net-centric interface where external customers exist. Waivers should be permitted

for legacy systems which work just fine (email, for instance), which do not expose fully

compliant net-services for others to use. Thick clients will always be needed as well, so plan

for them (i.e.: Google Earth).

Wrapping

The concept of creating an abstraction layer on top of more complicated

elements is a familiar pattern in software engineering. From a migration

9 See white paper on a Semantic Exchange Protocol: www.r2ad.com/papers

R2AD White Paper: SERVICE ORIENTED AQUISITION

© Copyright R2AD, LLC 2007-2008

- 16

-

standpoint, this is a critical tenant on which more effort should be expended to ensure that

this pattern is used for external interfaces.

V. Distributed Computing

Power to the Edge

A migration path must take into account the advances made in distributed computing and the

specific subfield of grid computing. Basically, grid computing can be defined as the harnessing

and sharing of computing power (CPU, memory, and storage) of networked computers to

solve problems and perform tasks.

First must be a recognition that net-centric computing is distributed computing and likewise,

grid computing is net-centric. It is logical to state this, however many do not fully appreciate

the vision and concept of grid computing and therefore dismiss it with the unintentional side-

effect of ignoring the advancements and contributions made by these fields by academia,

governments, and industry. Just as database technology once evolved from 1st-4th generation

technologies, management must be aware that web services are also evolving with grid

computing leading the way.

Key Technologies

Regardless of how standards evolve, it is certain that several key

technologies are required in order for a complete victory over stove

pipe non-interoperable systems:

- Universal identity (WS-Naming perhaps, Handle.net, WSRT)

- Enterprise Management (WSDM, WS-Management, WBEM,

WSRF, SML, etc.)

- Policy (WS-Policy, WS-Agreement, perhaps)

- Search (Google, perhaps)

- Geospatial (GML, KML)

- Notification (Alerting, CAP from OASIS)

- Authorization (Policy agreements)

- Configuration (WS-Management or WSDL or WSRF)

- Data Distribution (caching)

- Provisioning (secure application distribution, ACS perhaps)

- End User and Machine trusted Identity (PKI, WS-Naming)

- Basic Execution Environments (BES)

- Advanced grid containers such as Globus

Secondary to these are other various technologies which help make things easier

(transformation engines, accelerators, languages, etc). These others naturally occur and

become available without much effort (they are easy). The main ones however are harder to

establish and require leadership direction, and authority to ensure interoperability.

Data to the Edge

The user might go in and out of communication so a network stateful caching session should

be considered early as part of the infrastructure.

There are different meanings of the term "disconnected ops". I've described two definitions

below. There are probably others and variations….

Perhaps arriving at a consensus or different some different terms might help ensure a positive

software/system design. In either case, it is important to maintain transactional integrity of

the information.

Transport

Security

Policy

Identity and linkage

Information

R2AD White Paper: SERVICE ORIENTED AQUISITION

© Copyright R2AD, LLC 2007-2008

- 17

-

Definition One: When a client's LAN is disconnected (either intentionally or unintentionally) the

application software automatically enters an off-line state. The user is visually made aware of

the disconnected state. Changes made to any existing data or additions of data are queued

and persisted locally. When the connection is established, the changes are communicated to

the server and the client receives current state information. Any entered or changed items

made while off-line are checked for coherency and any conflicts are communicated to the user

for resolution.

Definition Two: The user synchronizes the client and then intentionally unplugs from the

network or directs the software to enter into a stand-alone mode. Data can be queued in a

similar manner as stated in definition one. The client, upon reconnection with the LAN, directs

the software to perform a re-synchronization. Conflicts are again communicated to the user

for resolution.

All services and capabilities should be designed with the limitations of the network in mind. If

these considerations are not part of the design, then a huge burden is put onto the latter

stages of system development where it is the most expensive to effect change.

Incorporating a distributed data design into a common service, perhaps as part of transport or

storage, would provide benefit to all participants.

R2AD White Paper: SERVICE ORIENTED AQUISITION

© Copyright R2AD, LLC 2007-2008

- 18

-

Principles of Net-Centricity

John Garstka describes the principles of net centricity in this way:

The tenets of Net Centricity are as follows: end-to-end communications

that supports connectivity, interoperability, security, and discovery.

For IETF purposes across the Internet. For First Responders or 911

support within a Metropolitan network with access to some form of

command control center, and for Defense these principles should work and

apply across their Global Information Grid (not Grid per OGF or the SOA

from Father of that Grid Dr. Ian Foster, but rather a network Grid).

See: http://www.dtic.mil/futurejointwarfare/concepts/netcentric_jfc.pdf

VI. Odds and Ends

Standards Compliant

Beware of the term “Standards Based”.

Compliance to a published and adopted specification recommended by a standard body results

in interoperability. Just being “Standards Based” accomplished very little in terms of realized

interoperability. A system could use C++ and claim that it is standards based.

Compliant software can also adhere to published profile(s) and thus enable agencies to deploy

solutions that interoperate even when based on different open source and/or commercial

software vendors’ implementations. Two examples of profiles are the WS-Interoperability

(WS-I) [WS-I BP 1.1] and the OGSA WSRF Basic Profile.

Patriotism & Rewards

DoD software developers want to know that they are doing their part to help the country.

They are patriotic. Government program managers should bear this in mind as they issue

work orders and prepare program schedules. Software developers gain great pride in knowing

that their work is fielded and is making a difference for the warfighter. Feedback is important.

Just the simple act of a congratulatory letter from the PM to the project staff is a great

motivator. A letter from the field is even better (especially from high-ranking officers). The

opposite is also true. Lack of fielding and lack of acknowledgement is sure to reduce morale

and performance.

Accountability & Requirements

Contractors that are late or deliver code that has errors in it should not be paid (at least as

much as they would otherwise receive). The government must be able to hold money back

from the contractors that do not deliver a product that meets the requirements. If the

delivered software, even though on time, has bugs which impact capability and performance,

then the contractor should be required to fix the problems on their dime. The government

should not be in the business of paying for code which does not work or is not in compliance

with the agreed upon criteria.

In order to enforce this, the contracting agency must have an excellent understanding of the

specifications and must be able to understand what it is that the developer is producing. A

clear understanding of the detailed requirements is required in order to enforce the quality of

the product. It is therefore important that the Government be provided a good specification,

and has allowed for sufficient time and resources for integration and testing. Generic and

vague tasking should raise the red flag.

R2AD White Paper: SERVICE ORIENTED AQUISITION

© Copyright R2AD, LLC 2007-2008

- 19

-

The U.S. Government should not reward contractors that deliver buggy software with more

money to fix the bugs they wrote. Independent Verification and Validation (IV&V) is an

important tool that the government needs to employ. IV&V teams need to be driven by a

good set of requirements which can be used to validate the system.

However, it is important to understand that requirements can change. Every software

engineer is well aware of the pitfall called “requirements creep”. The answer to this dilemma

is two fold:

• Develop Requirements that are complete as possible

• Ensure the development process can handle new requirements

Spending a decent percentage of the product life-cycle on requirements analysis is healthy. It

prevents “requirements-creep”. Likewise, spending a decent amount of time and energy on

design can help create a robust product which can withstand new requirements. An example

of this is the use of abstractions in design. Instead of designing many code modules around a

specific database schema, a generic approach can be taken which isolates code from items

which are likely to change in time, such as schema. While binding eventually is needed,

applications can use current technology to mitigate the cost of changes by using tools such as

Hibernate in the DB world and using XPath and XQuery in the XML world. Mediation

technology and virtualization technology (grids) offer a cost effective solution.

Certified DoD Software Engineer

Software developers for the DoD today generally have a security clearance which they must

renew periodically and receive interim training updates. However they do not receive any

certification on how to develop DoD software. Microsoft, Oracle, Sun, and many other

companies offer certification training and testing.

The DoD should do the same to ensure that developers are aware of the security guidelines

that they MUST follow. Furthermore, such a certification process could help make developers

aware of the software registries, architecture documents, and other policies of the DoD. This

can be a tool to help reduce cost of development and to make engineers aware of existing

policies and processes.

Certification and Accreditation of Services

Most systems today have a “type” accreditation. Any deviations from the set of software

components (including the OS in many instances) require the approval and authorization of

the local decision authority. This poses a problem when considering the net-centric world

where a service is stood up without complete knowledge of all the interactions possible in the

production environment.

We recommend that a policy be developed between the project management, Certifier and

DAA that says each distinct service or capability be separately certified and accredited, with

end to end testing to the maximum extent possible of the superset of services

intercommunicating as a consistent part of their functions.

Discrete units of capability (OS, web server, app, etc) are tested individually, with the

conglomerate findings used to develop a risk assessment. Taking this a step further, separate

testing could be conducted on the risk assessment of a set of orchestrated services.

Another important facet which pertains to this is that in order to meet Service Level

Agreements (SLAs), services need to be capable of being deployed dynamically into various

“service containers”. Grid computing offers this technology today. This sort of environment

R2AD White Paper: SERVICE ORIENTED AQUISITION

© Copyright R2AD, LLC 2007-2008

- 20

-

should be approved by a knowledgeable security team. The end result will be a robust and

secure command and control environment which brings “power to the edge”10.

Service PitFalls

The pitfalls known so far should be documented. The lessons learned from the pilots could be

documented in a way to help legacy systems move ahead. Industry should be consulted,

being wary of the sales language and motivations of companies.

One such pitfall is defining the network services at the wrong level of detail or with the wrong

focus which can lead to many nearly identical services (specialized) which do not interoperate

to share real information.

Another might be that networked services become overly dependent on single points of failure

so that, like a rack of dominoes, when ones goes down, they all go down.

Still another, might be the SOA Silo effect which creates a beautiful net-centric system which

does not interoperate with others because of proprietary, complex, or non compatible external

interfaces.

Lastly, another pitfall to avoid is versioning. Since services are used by many folks on the

network, to include external groups or programs, it is important to ask the question of what is

impacted when a service definition changes. What will ensure backwards compatibility? How

will a consumer of a service function if the service is updated with a newer version that does

not match the previously established and coded interfaces? There are two ways to solve this:

� One is to build a service with versioning part of the protocol to access it (such as

how browser can render HTML created from different versions of the

specification by examining and acting upon header information).

� Another way would be to introduce a mediation/translation layer which re-directs

calls. This is not as efficient and carries with it a heavy maintenance burden on

that service broker component.

Customer (End-User) Input

To many times the end user never quite gets what they need or asks for. One reason for this

is that while they may be involved in the beginning of the software lifecycle, the are rarely in

the middle (preliminary/detailed design and Unit level testing).

10 Grid Study for DISA: http://www.r2ad.com/papers/Grid-Study-R2AD.pdf

Bad levels of user

involvement (closed

development
model/architecture)

Better example of user

involvement to ensure

product is as needed.
Open Architecture.

Use-Case
Requirements
Analysis

Design and
Development

Integration
and Fielding

R2AD White Paper: SERVICE ORIENTED AQUISITION

© Copyright R2AD, LLC 2007-2008

- 21

-

In the diagram above, the width of the graphic indicates the level of external involvement

throughout the software lifecycle by end-user (warfighter) as well as others such as other

programs, testers, auditors, and other developers from other projects that might be inclined to

collaborate during the process to share ideas and best practices.

We propose that by keeping projects open throughout their entire lifecycle can greatly improve

the overall quality and capability of the systems. Shared development environments such as

SourceForge provide a team accessible web based development and collaboration space. End-

users could then join the project team and provide feedback when it is needed most. Take

advantage of the network to provide remote access to software in the various stages of

development and test to get feedback.

Additionally, the end-user (the real customer) should be involved in all phases.

Representation is critical at the key milestone events to include final testing and installation.

Software Engineers would benefit greatly if they can spend time in the field helping to train,

install, or solve issues with the end-user.

C2 XML Document

Ideally, all C4ISR systems would be capable of ingesting a single document format for all

battlefield elements. It would behave much like a spreadsheet file does for Microsoft Excel.

This concept has been around a number of years and many attempts have been made to

create it, however without standardization adoption, the attempts have failed. Recent

attempts might be more successful, however it makes sense that eventually something will be

adopted and therefore should be part of the migration strategy.

The XML document would have to meet certain requirements:

- Human and machine readable/parseable (XML tagged)

- registered MIME extension (“*.c4i”)

- standardized/published and clear format description found normally in the Interface

Control Document (ICD).

The document should also be capable of being very small, meaning it should not have very

much overhead and could be as simple as <x:note>Insert note here</>. Embedded MIME

data should be supported for attachments (such as SOAP with Attachments, etc). However

these should be only really used for registered standardized formats (JPEG, NITF, MPEG2,

etc). External references should be allowed for both human and machine transversal.

A modified version of Microsoft Word and perhaps Adobe Acrobat should be capable of

producing this document11. Word should be capable of opening the document and examining

its contents. It should be capable of being emailed and also reachable on web sites (like

PDFs).. It should be capable of being signed and encrypted. Bridges should be able to

sanitize them with zero loss of referential data, meaning the pedigree should be encoded using

a one-way token.

Standards

The migration path must include standards. Where standards fall

short of requirements, they must be identified and involvement in

a standards process (inside or outside the DoD) must focus on

creating adoption via implementation and piloting.

11 XML supported in Office 2003 and Adobe products

Standards (Industry/DoD)

NCES/NECC Core/Common

CoI Specific (avoid)

R2AD White Paper: SERVICE ORIENTED AQUISITION

© Copyright R2AD, LLC 2007-2008

- 22

-

Cost-Benefit Analysis

COTS software is not the answer if the COTS does not follow the standards. It would "COTS"

too much to keep upgrading and retro-fitting other code each time the vendor changes course

to account for competitive, economic, or other commercial forces. Code re-use coupled with

open-source initiatives (a form of code-reuse) along with the overall life-extending benefits of

standards need to be weighed to maximize the tax dollar potential.

Examine alternatives before spending tax payer dollars to ensure that they money is spent

wisely. Many times, the "Not-Invented-Here" syndrome causes extra money to spent without

real reason. Try to adopt and re-use rather than always invent. Take the time and energy to

create synergy between departments and programs to help share the cost. Be aware that this

also creates dependencies and this has to be considered as part of the analysis. Sometimes, it

is better to be independent.

VII. Terminology and References
The following outlines the key concepts and terms used in this paper.

IV&V: Independent Verification and Validation (IV&V) – unbiased review and testing

UML: Unified Modeling Language from the Object Management Group (OMG)

JCP: The Java Community Process by which Java technology is advanced.

NECC: Net-Enabled Command Capability, previously known as JC2.

Acknowledgements

Thanks to Chris Brown of Mercury Interactive, Peter Ziu of Northrop Grumman, for their

constructive feedback and valuable input. We recognize David Watjen of the Defense

Information Systems Agency (DISA) for the professional technical editing. Thanks to MITRE

JFCOM for hosting the SOA Symposium, July 2007, at which many of these ideals were

presented and discussed.

References

[WS-I BP 1.1] WS-I Basic Profile 1.1, web services stack
http://www.ws-i.org/Profiles/BasicProfile-1.1.html

[OGSA Arch] Foster, I., Kishimoto, H.,. Savva, A., Berry, D., Djaoui, A., Grimshaw, A., Horn, B., Maciel, F.,
Siebenlist, F., Subramaniam, R., Treadwell, J., and Von Reich, J.: The Open Grid Services Architecture,
Version 1.0. GGF OGSA Working Group (OGSA-WG), 2005-2006. http://www.ggf.org/documents/GWD-I-
E/GFD-I.030.pdf.

[AdaIC] The Ada Resource Association (ARA) maintains the Ada Information Clearinghouse (AdaIC)
website. http://www.adaic.org/

[SDD] OASIS Solution Deployment Descriptor (SDD) Technical Committee web site

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=sdd

[OGF] Open Grid Forum, web site: http://www.ogf.org

